Rectangle Theorem

By Magdalena Kubik

Independent Scientist 6 Kręta Street, Krężce, Poland

Abstract

I claim that every rectangle with sides an_a , bn_b and with diagonal(s) dn_d is a transformation of a rectangle with a side a equal to a side b, a=b, and with diagonal(s) d which corresponds to a rectangle with a side a_1 equal to 1, $a_1=1$, side b_1 equal to 1, $b_1=1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d_1=\sqrt{2}$, corresponding transformation of which results in a transformation of the rectangle with the side a_1 equal to 1, $a_1=1$, side b_1 equal to 1, $b_1=1$, and with diagonal(s) d_1 equal to $\sqrt{2}$ into a rectangle with sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ which being multiplied by the side a=b of the rectangle with the side a equal to the side b, a=b, and with diagonal(s) d accordingly produce the rectangle with sides an_a , bn_b and diagonal(s) dn_d and I prove that this what I claim is true.

Contents

1	Introduction	2
2	Rectangle Theorem	2
3	Proof of Rectangle Theorem	5
Bi	ibliography	11

1 Introduction

I claim that every rectangle with sides an_a , bn_b and with diagonal(s) dn_d is a transformation of a rectangle with a side a equal to a side b, a = b, and with diagonal(s) d which corresponds to a rectangle with a side a_1 equal to 1, $a_1 = 1$, side b_1 equal to 1, $b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d_1 = \sqrt{2}$, corresponding transformation of which results in a transformation of the rectangle with the side a_1 equal to 1, $a_1 = 1$, side b_1 equal to 1, $a_1 = 1$, and with diagonal(s) a_1 equal to a_1 equal to a_2 into a rectangle with sides $a_1n_{a_1}$, $a_1n_{b_1}$ and with diagonal(s) a_1 equal to the side a_2 equal to the side a_3 equal to the side a_4 equal to a_4 equal

2 Rectangle Theorem

Rectangle Theorem. Every rectangle with sides an_a , bn_b and with diagonal(s) dn_d is a transformation of a rectangle with a side a equal to a side b, a = b, and with diagonal(s) d, the side a of which is equal to a product of the side a equal to the side b, a = b, of a rectangle with the side a equal to the side b, a = b, and with diagonal(s) d and a side a_1 of a rectangle with the side a_1 equal to a side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$:

$$a = aa_1 \tag{1}$$

or

$$a = ba_1 \tag{2}$$

the side b of which is equal to a product of the side a equal to the side b, a = b, of a rectangle with the side a equal to the side b, a = b, and with diagonal(s) d and a side b_1 of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$:

$$b = ab_1 \tag{3}$$

or

$$b = bb_1 \tag{4}$$

the diagonal(s) d of which is(are) equal to a product of the side a equal to the side b, a = b, of a rectangle with the side a equal to the side b, a = b, and with diagonal(s) d and a diagonal d_1 of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$:

$$d = ad_1 \tag{5}$$

or

$$d = bd_1 \tag{6}$$

by the change of its side or sides a=b and diagonal(s) d accordingly by accordingly the same corresponding rates characterizing relations between the transformed sides an_a , bn_b and diagonal(s) dn_d of the rectangle with the sides an_a , bn_b and with diagonal(s) dn_d and the side a equal to the side b, a=b, of the rectangle with the side a equal to side b, a=b, and with diagonal(s) d as rates characterizing relations between the transformed sides $a_1n_{a_1}$, $b_1n_{b_1}$ and diagonal(s) $d_1n_{d_1}$ of the rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ and the side a_1 equal to the side b_1 , $a_1=b_1$, of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1=b_1=1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d=\sqrt{2}$:

$$n_a = \frac{an_a}{a} = \frac{a_1 n_{a_1}}{a_1} = n_{a_1} \tag{7}$$

$$n_b = \frac{bn_b}{a} = \frac{b_1 n_{b_1}}{a_1} = n_{b_1} \tag{8}$$

$$n_d = \frac{dn_d}{a} = \frac{d_1 n_{d_1}}{a_1} = n_{d_1} \tag{9}$$

or accordingly:

$$n_a = \frac{an_a}{b} = \frac{a_1n_{a_1}}{b_1} = n_{a_1} \tag{10}$$

$$n_b = \frac{bn_b}{b} = \frac{b_1 n_{b_1}}{b_1} = n_{b_1} \tag{11}$$

$$n_d = \frac{dn_d}{b} = \frac{d_1 n_{d_1}}{b_1} = n_{d_1} \tag{12}$$

corresponding to transformatin constituting rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ being the transformation of the rectangle

with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$ by the change of its side or sides $a_1 = b_1 = 1$ and diagonal(s) $d = \sqrt{2}$ accordingly by accordingly the same corresponding rates characterizing relations between the transformed sides $a_1n_{a_1}$, $b_1n_{b_1}$ and diagonal(s) $d_1n_{d_1}$ of the rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ and the side a_1 equal to the side b_1 , $a_1 = b_1$, of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$ as rates characterizing relations between the transformed sides a_1 , a_2 , a_3 and diagonal(s) a_3 of the rectangle with the sides a_1 , a_2 , a_3 , a_4 , a_4 , a_5 , a_4 , a_5 ,

$$n_{a_1} = \frac{a_1 n_{a_1}}{a_1} = \frac{a n_a}{a} = n_a \tag{13}$$

$$n_{b_1} = \frac{b_1 n_{b_1}}{a_1} = \frac{b n_b}{a} = n_b \tag{14}$$

$$n_{d_1} = \frac{d_1 n_{d_1}}{a_1} = \frac{dn_d}{a} = n_d \tag{15}$$

or accordingly:

$$n_{a_1} = \frac{a_1 n_{a_1}}{b_1} = \frac{a n_a}{b} = n_a \tag{16}$$

$$n_{b_1} = \frac{b_1 n_{b_1}}{b_1} = \frac{b n_b}{b} = n_b \tag{17}$$

$$n_{d_1} = \frac{d_1 n_{d_1}}{b_1} = \frac{dn_d}{b} = n_d \tag{18}$$

the side an_a of which is equal to a product of the side a equal to the side b, a=b, of the rectangle with the side a equal to the side b, a=b, and with diagonal(s) d and the side $a_1n_{a_1}$ of the rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ constituting transformation of the side a_1 of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1=b_1=1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d=\sqrt{2}$, corresponding to transformation of the side a of the rectangle with the side a equal to the side b, a=b, and with diagonal(s) d into the side an_a of the rectangle with the sides an_a , bn_b and with diagonal(s) dn_d :

$$an_a = aa_1 n_{a_1} \tag{19}$$

or

$$an_a = ba_1 n_{a_1} \tag{20}$$

the side bn_b of which is equal to a product of the side a equal to the side b, a = b, of the rectangle with the side a equal to the side b, a = b, and with diagonal(s) d and the side $b_1n_{b_1}$ of the rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ constituting transformation of the side b_1 of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$, corresponding to transformation of the side b of the rectangle with side a equal to the side b, a = b, and with diagonal(s) d into the side bn_b of the rectangle with the side an_a , an_b and with diagonal(s) an_d :

$$bn_b = ab_1 n_{b_1} \tag{21}$$

or

$$bn_b = bb_1 n_{b_1} \tag{22}$$

and the diagonal(s) dn_d of which is(are) equal to a product of the side a equal to the side b, a = b, of a rectangle with the side a equal to the side b, a = b, and with diagonal(s) d and diagonal(s) $d_1n_{d_1}$ of the rectangle with the sides $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ constituting transformation of the diagonal(s) d_1 of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$, corresponding to transformation of the diagonal(s) d of the rectangle with the side a equal to the side b, a = b, and with diagonal(s) d into the diagonal(s) dn_d of the rectangle with the sides a_1 , a_2 , a_3 , a_4 , a_4 , a_4 , a_5 , a_5 , a_4 , a_5

$$dn_d = ad_1 n_{d_1} \tag{23}$$

or

$$dn_d = bd_1 n_{d_1} \tag{24}$$

3 Proof of Rectangle Theorem

Proof of Rectangle Theorem. Rectangle MNOP [Fig.2] is a rectangle with the side an_a , bn_b and with diagonal(s) dn_d where assumed that:

Figure 1: Transformations of a rectangle corresponding to transformations of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$

Figure 2: Transformations of the rectangle corresponding to transformations of the rectangle with the side a_1 equal to the side b_1 equal to 1, $a_1 = b_1 = 1$, and with diagonal(s) d_1 equal to $\sqrt{2}$, $d = \sqrt{2}$

$$|MN| = |PO| = an_a = 2d - a = 2\sqrt{2}a - a = 2d - b = 2\sqrt{2}b - b$$

$$|MP| = |NO| = bn_b = 2d - a = 2\sqrt{2}a - a = 2d - b = 2\sqrt{2}b - b$$

$$|MO| = |PN| = dn_d = (2d - a)\sqrt{2} = (2\sqrt{2}a - a)\sqrt{2} = (2d - b)\sqrt{2} = (2\sqrt{2}b - b)\sqrt{2}.$$

Rectangle MNOP [Fig.2] is a transformation of a rectangle ABCD [Fig.2]

with a side a equal to a side b, a = b, and what proved by Euclid that: "In right-angled triangles, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides containing the right-angle" [Euclid, Proposition 1.47] with diagonal(s) d equal to $\sqrt{2}a$ equal to $\sqrt{2}b$ into rectangles: ECBF, GDCH, IADJ, KBAL [Fig.2] where assumed that:

$$|FE| = |BC| = an_a = a * 1 = a = b * 1 = b$$

$$|FB| = |EC| = bn_b = a * \sqrt{2} = \sqrt{2}a = b * \sqrt{2} = \sqrt{2}b$$

$$|FC| = |EB| = dn_d = a * \sqrt{3} = \sqrt{3}a = b * \sqrt{3} = \sqrt{3}b$$

$$|GH| = |DC| = an_a = a * 1 = a = b * 1 = b$$

$$|GD| = |HC| = bn_b = a * \sqrt{2} = \sqrt{2}a = b * \sqrt{2} = \sqrt{2}b$$

$$|GC| = |HD| = dn_d = a * \sqrt{3} = \sqrt{3}a = b * \sqrt{3} = \sqrt{3}b$$

$$|AD| = |IJ| = an_a = a * 1 = a = b * 1 = b$$

$$|AI| = |DJ| = bn_b = a * \sqrt{2} = \sqrt{2}a = b * \sqrt{2} = \sqrt{2}b$$

$$|AJ| = |DI| = dn_d = a * \sqrt{3} = \sqrt{3}a = b * \sqrt{3} = \sqrt{3}b$$

$$|AB| = |LK| = an_a = a * 1 = a = b * 1 = b$$

$$|AL| = |BK| = bn_b = a * \sqrt{2} = \sqrt{2}a = b * \sqrt{2} = \sqrt{2}b$$

$$|AK| = |LB| = dn_d = a * \sqrt{3} = \sqrt{3}a = b * \sqrt{3} = \sqrt{3}b$$

by a change of the side b into diagonal d accordingly by:

$$n_a = \frac{a}{a} = \frac{b}{b} = 1 = n_{a_1}$$

$$n_b = \frac{\sqrt{2}a}{a} = \frac{\sqrt{2}b}{b} = \sqrt{2} = n_{b_1}$$

$$n_d = \frac{\sqrt{3}a}{a} = \frac{\sqrt{3}b}{b} = \sqrt{3} = n_{d_1}$$

and into rectangles: MECH, GDJN, LAIO, PFBK [Fig.2] where assumed that:

$$\begin{split} |\mathrm{ME}| &= |\mathrm{HC}| = an_a = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b \\ |\mathrm{MH}| &= |\mathrm{EC}| = bn_b = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b \\ |\mathrm{EH}| &= |\mathrm{MC}| = dn_d = a *\sqrt{4} = \sqrt{4}a = b *\sqrt{4} = \sqrt{4}b \\ |\mathrm{GN}| &= |\mathrm{DJ}| = an_a = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b \\ |\mathrm{GD}| &= |\mathrm{NJ}| = bn_b = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b \\ |\mathrm{DN}| &= |\mathrm{GJ}| = dn_d = a *\sqrt{4} = \sqrt{4}a = b *\sqrt{4} = \sqrt{4}b \\ |\mathrm{AL}| &= |\mathrm{IO}| = an_a = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b \end{split}$$

$$|AI| = |LO| = bn_b = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b$$

$$|AO| = |IL| = dn_d = a *\sqrt{4} = \sqrt{4}a = b *\sqrt{4} = \sqrt{4}b$$

$$|FB| = |PK| = an_a = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b$$

$$|FP| = |BK| = bn_b = a *\sqrt{2} = \sqrt{2}a = b *\sqrt{2} = \sqrt{2}b$$

$$|FK| = |PB| = dn_d = a *\sqrt{4} = \sqrt{4}a = b *\sqrt{4} = \sqrt{4}b$$

by a change of the side a into diagonal d and the side b into diagonal d accordingly by:

$$\begin{split} n_a &= \frac{\sqrt{2}a}{a} = \frac{\sqrt{2}b}{b} = \sqrt{2} = n_{a_1} \\ n_b &= \frac{\sqrt{2}a}{a} = \frac{\sqrt{2}b}{b} = \sqrt{2} = n_{b_1} \\ n_d &= \frac{\sqrt{4}a}{a} = \frac{\sqrt{4}b}{b} = \sqrt{4} = n_{d_1} \end{split}$$

Rectangle $M_1N_1O_1P_1$ [Fig.2] is a rectangle with the side $a_1n_{a_1}$, $b_1n_{b_1}$ and with diagonal(s) $d_1n_{d_1}$ where assumed that:

$$\begin{split} |M_1N_1| &= |P_1O_1| = a_1n_{a_1} = 2d_1 - a_1 = 2\sqrt{2}a_1 - a_1 = 2d_1 - b_1 = 2\sqrt{2}b_1 - b_1 = 2\sqrt{2}-1 \\ |M_1P_1| &= |N_1O_1| = b_1n_{b_1} = 2d_1 - a_1 = 2\sqrt{2}a_1 - a_1 = 2d_1 - b_1 = 2\sqrt{2}b_1 - b_1 = 2\sqrt{2}-1 \\ |M_1O_1| &= |P_1N_1| = d_1n_{d_1} = (2d_1 - a_1)\sqrt{2} = (2\sqrt{2}a_1 - a_1)\sqrt{2} = (2d_1 - b_1)\sqrt{2} = (2\sqrt{2}b_1 - b_1)\sqrt{2} = (2\sqrt{2}b_1 - b_1)\sqrt{2} = (2\sqrt{2}-1)\sqrt{2}. \end{split}$$

Rectangle $M_1N_1O_1P_1$ [Fig.2] is a transformation of a rectangle $A_1B_1C_1D_1$ [Fig.2] with a side a_1 equal to a side b_1 equal to 1, $a_1 = b_1 = 1$, and with proved by Euclid that: "In right-angled triangles, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides containing the right-angle" [Euclid, Proposition 1.47] diagonal(s) d_1 equal to $\sqrt{2}a_1$ equal to $\sqrt{2}b_1$ equal to $\sqrt{2}$, $d_1 = \sqrt{2}a_1 = \sqrt{2}b_1 = \sqrt{2}$, into rectangles: $E_1C_1B_1F_1$, $G_1D_1C_1H_1$, $I_1A_1D_1J_1$, $K_1B_1A_1L_1$ [Fig.2] where assumed that:

$$\begin{split} |F_1E_1| &= |B_1C_1| = a_1n_{a_1} = a_1*1 = a_1 = b_1*1 = b_1 = 1 \\ |F_1B_1| &= |E_1C_1| = b_1n_{b_1} = a_1*\sqrt{2} = \sqrt{2}a_1 = b_1*\sqrt{2} = \sqrt{2}b_1 = \sqrt{2} \\ |F_1C_1| &= |E_1B_1| = d_1n_{d_1} = a_1*\sqrt{3} = \sqrt{3}a_1 = b_1*\sqrt{3} = \sqrt{3}b_1 = \sqrt{3} \\ |G_1H_1| &= |D_1C_1| = a_1n_{a_1} = a_1*1 = a_1 = b_1*1 = b_1 = 1 \\ |G_1D_1| &= |H_1C_1| = b_1n_{b_1} = a_1*\sqrt{2} = \sqrt{2}a_1 = b_1*\sqrt{2} = \sqrt{2}b_1 = \sqrt{2} \end{split}$$

$$|G_1C_1| = |H_1D_1| = d_1n_{d_1} = a_1 *\sqrt{3} = \sqrt{3}a_1 = b_1 *\sqrt{3} = \sqrt{3}b_1 = \sqrt{3}$$

$$|A_1D_1| = |I_1J_1| = a_1n_{a_1} = a_1 *1 = a_1 = b_1 *1 = b_1 = 1$$

$$|A_1I_1| = |D_1J_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|A_1J_1| = |D_1I_1| = d_1n_{d_1} = a_1 *\sqrt{3} = \sqrt{3}a_1 = b_1 *\sqrt{3} = \sqrt{3}b_1 = \sqrt{3}$$

$$|A_1B_1| = |L_1K_1| = a_1n_{a_1} = a_1 *1 = a_1 = b_1 *1 = b_1 = 1$$

$$|A_1L_1| = |B_1K_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|A_1K_1| = |L_1B_1| = d_1n_{d_1} = a_1 *\sqrt{3} = \sqrt{3}a_1 = b_1 *\sqrt{3} = \sqrt{3}b_1 = \sqrt{3}$$

by a change of the side b_1 into diagonal d_1 accordingly by:

$$n_{a_1} = \frac{a_1}{a_1} = \frac{b_1}{b_1} = 1 = n_a$$

$$n_{b_1} = \frac{\sqrt{2}a_1}{a_1} = \frac{\sqrt{2}b_1}{b_1} = \sqrt{2} = n_b$$

$$n_{d_1} = \frac{\sqrt{3}a_1}{a_1} = \frac{\sqrt{3}b_1}{b_1} = \sqrt{3} = n_d$$

and into rectangles: $M_1E_1C_1H_1$, $G_1D_1J_1N_1$, $L_1A_1I_1O_1$, $P_1F_1B_1K_1$ [Fig.2] where assumed that:

$$|M_1E_1| = |H_1C_1| = a_1n_{a_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|M_1H_1| = |E_1C_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|E_1H_1| = |M_1C_1| = d_1n_{d_1} = a_1 *\sqrt{4} = \sqrt{4}a_1 = b_1 *\sqrt{4} = \sqrt{4}b_1 = \sqrt{4}$$

$$|G_1N_1| = |D_1J_1| = a_1n_{a_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b = \sqrt{2}$$

$$|G_1D_1| = |N_1J_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|D_1N_1| = |G_1J_1| = d_1n_{d_1} = a_1 *\sqrt{4} = \sqrt{4}a_1 = b_1 *\sqrt{4} = \sqrt{4}b_1 = \sqrt{4}$$

$$|A_1L_1| = |I_1O_1| = a_1n_{a_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|A_1I_1| = |L_1O_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|A_1O_1| = |I_1L_1| = d_1n_{d_1} = a_1 *\sqrt{4} = \sqrt{4}a_1 = b_1 *\sqrt{4} = \sqrt{4}b_1 = \sqrt{4}$$

$$|F_1B_1| = |P_1K_1| = a_1n_{a_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|F_1P_1| = |B_1K_1| = b_1n_{b_1} = a_1 *\sqrt{2} = \sqrt{2}a_1 = b_1 *\sqrt{2} = \sqrt{2}b_1 = \sqrt{2}$$

$$|F_1H_1| = |P_1B_1| = d_1n_{d_1} = a_1 *\sqrt{4} = \sqrt{4}a_1 = b_1 *\sqrt{4} = \sqrt{4}b_1 = \sqrt{4}$$

by a change of the side a_1 into diagonal d_1 and the side b_1 into diagonal d_1 accordingly by:

$$\begin{array}{l} n_{a_1} = \frac{\sqrt{2}a_1}{a_1} = \frac{\sqrt{2}b_1}{b_1} = \sqrt{2} = n_a \\ n_{b_1} = \frac{\sqrt{2}a_1}{a_1} = \frac{\sqrt{2}b_1}{b_1} = \sqrt{2} = n_b \end{array}$$

$$n_{d_1} = \frac{\sqrt{4}a_1}{a_1} = \frac{\sqrt{4}b_1}{b_1} = \sqrt{4} = n_d$$

what gives accordingly:

in reference to rectangle MNOP [Fig.2]:

$$an_{a} = aa_{1}n_{a_{1}} = ba_{1}n_{a_{1}} = a * (2\sqrt{2} - 1) = 2\sqrt{2}a - a = b * (2\sqrt{2} - 1) = 2\sqrt{2}b - b$$

$$bn_{b} = ab_{1}n_{b_{1}} = bb_{1}n_{b_{1}} = a * (2\sqrt{2} - 1) = 2\sqrt{2}a - a = b * (2\sqrt{2} - 1) = 2\sqrt{2}b - b$$

$$dn_{d} = ad_{1}n_{d_{1}} = bd_{1}n_{d_{1}} = a * (2\sqrt{2} - 1) * \sqrt{2} = (2\sqrt{2}a - a)\sqrt{2} = b * (2\sqrt{2} - 1) * \sqrt{2} = (2\sqrt{2}b - b)\sqrt{2}$$

in reference to rectangles ECBF, GDCH, IADJ, KBAL [Fig.2]:

$$an_a = aa_1n_{a_1} = ba_1n_{a_1} = a * 1 = a = b * 1 = b$$

 $bn_b = ab_1n_{b_1} = bb_1n_{b_1} = a *\sqrt{2} = a\sqrt{2} = b *\sqrt{2} = b\sqrt{2}$
 $dn_d = ad_1n_{d_1} = bd_1n_{d_1} = a *\sqrt{3} = a\sqrt{3} = b *\sqrt{3} = b\sqrt{3}$

in reference to rectangles MECH, GDJN, LAIO, PFBK [Fig.2]:

$$an_a = aa_1n_{a_1} = ba_1n_{a_1} = a *\sqrt{2} = a\sqrt{2} = b *\sqrt{2} = b\sqrt{2}$$

 $bn_b = ab_1n_{b_1} = bb_1n_{b_1} = a *\sqrt{2} = a\sqrt{2} = b *\sqrt{2} = b\sqrt{2}$
 $dn_d = ad_1n_{d_1} = bd_1n_{d_1} = a *\sqrt{4} = a\sqrt{4} = b *\sqrt{4} = b\sqrt{4}$

According to proved by Euclid that: "In right-angled triangles, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides containing the right-angle" [Euclid, Proposition 1.47] in rectangles ECBF, GDCH, IADJ, KBAL [Fig.2] where assumed that: $an_a = a = b$, $bn_b = \sqrt{a^2 + a^2} = \sqrt{2}a = \sqrt{b^2 + b^2} = \sqrt{2}b$ diagonal(s) dn_d is(are) equal to the square root of the sum of the squares of an_a and bn_b , $dn_d = \sqrt{a^2 + (\sqrt{2}a)^2} = \sqrt{3}a = \sqrt{b^2 + (\sqrt{2}b)^2} = \sqrt{3}b$ and in rectangles MECH, GDJN, LAIO, PFBK [Fig.2] where assumed that: $an_a = \sqrt{a^2 + a^2} = \sqrt{2}a = \sqrt{b^2 + b^2} = \sqrt{2}b$, $bn_b = \sqrt{a^2 + a^2} = \sqrt{2}a = \sqrt{b^2 + b^2} = \sqrt{2}b$ diagonal(s) dn_d is(are) equal to the square root of the sum of the squares of an_a and bn_b , $dn_d = \sqrt{(\sqrt{2}a)^2 + (\sqrt{2}a)^2} = \sqrt{4}a = \sqrt{(\sqrt{2}b)^2 + (\sqrt{2}b)^2} = \sqrt{4}b$.

Rectangle MNOP [Fig.2] is a square on side an_a or bn_b , $MNOP = (an_a)^2 =$

 $(bn_b)^2$, [Euclid, Proposition 1.46] equal to the sum of areas of rectangles ECBF, GDCH, IADJ, KBAL [Fig.2] and MECH, GDCH, LAIO, PFBK [Fig.2] reduced by multiplied areas accordingly, $MNOP = (an_a)^2 = (bn_b)^2 = 2(\sqrt{2}a)^2 - a^2 + 2(\sqrt{2}a)^2 - 4a(\sqrt{2}a) + 2a^2 = 2(\sqrt{2}b)^2 - b^2 + 2(\sqrt{2}b)^2 - 4b(\sqrt{2}b) + 2b^2 = (2\sqrt{2}a - a)^2$ $an_a = 2\sqrt{2}a - a = aa_1n_{a_1} = ba_1n_{a_1}$ $bn_b = 2\sqrt{2}b - b = ab_1n_{b_1} = bb_1n_{b_1}$ $dn_d = (2\sqrt{2}a - a)\sqrt{2} = (2\sqrt{2}b - b)\sqrt{2} = ad_1n_{d_1} = bd_1n_{d_1}.$

References

[Euclid] Euclid of Alexandria, Euclid's Elements of Geometry, edited, and provided with a modern English translation, by Richard Fitzpatrick, ISBN 978-0-6151-7984-1

List of Figures

 ${f Magdalena}$ ${f Kubik}$

 $6~\mathrm{Kręta~Street},\,96\text{-}124~\mathrm{Krężce}$

Poland

kubik.magdalena@wp.pl or biuro@pintor.pl